

Introduction

P-MS02.MSE02 Classic

MS working pressure	450 bar [6 526 PSI]
MSE working pressure	400 bar [5 801 PSI]

P-MS02.MSE02 High Flow

MS working pressure	450 bar [6 526 PSI]
MSE working pressure	400 bar [5 801 PSI]

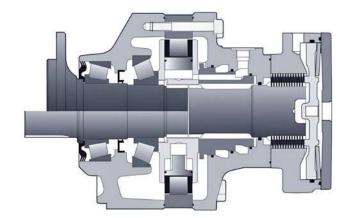
Features

Given their optimized and modular design capable of delivering high performance, motors from the MS range have established themselves as a benchmark on the hydraulic motor market.

MS range can be characterized by :

- 1. Compacity
- 2. Optimized cost
- 3. Power density

The MS High Flow motor range has all the qualities that have made the MS Classic range such a success: they are modular and robust, offering performance advantages (speed and power) at the same time.


MS High Flow motor range is different by :

- 1. New closed cover
- 2. Integrated exchange valve
- 3. New ports geometry
- 4. New valving

characteristics

High Flow

Max.power

	1C motor	2C motor, 1 st displacement	2C motor, 2 nd displacement
MS02	18 kW	18 kW	12 kW
MSE02	22 kW	22 kW	16.5 kW

				Cams with equal lobes						
	C		MS02				MSE02			
	C		8	0	1	2	0	1	2	
	1	cm³/tr [cu.in/rev.] cm³/tr [cu.in/rev.]	172 [10.5]	213 [13.0]	235 [14.3]	255 [15.6]	332 [20.2]	364 [22.2]	398 [24.3]	
	2	cm³/tr [cu.in/rev.]	86 [5.2]	107 <i>[6.5]</i>	118 <i>[7.2]</i>	128 <i>[7.8]</i>	166 <i>[10.1]</i>	182 [11.1]	199 [12.1]	
Motor High Flow 1C Max. speed*	0	tr/min [RPM]	700	570	520	480	370	340	310	
Motor HighFlow 2C	0	tr/min [RPM]	850	700	630	590	440	400	370	
Max. speed*	2		900	720	650	610	470	420	390	

First displacement

 $^{^{\}star}$ Based on nominal no-load Δp of 20 bar [290 PSI].

Max. power obtained at max speed, with Peek bushings.

Classic

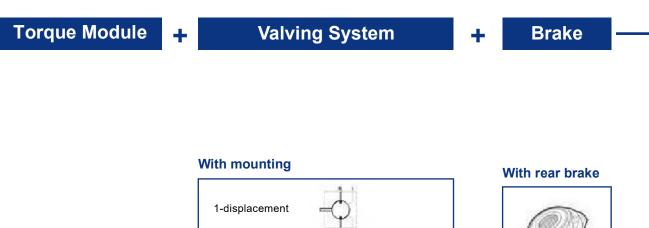
Max.power

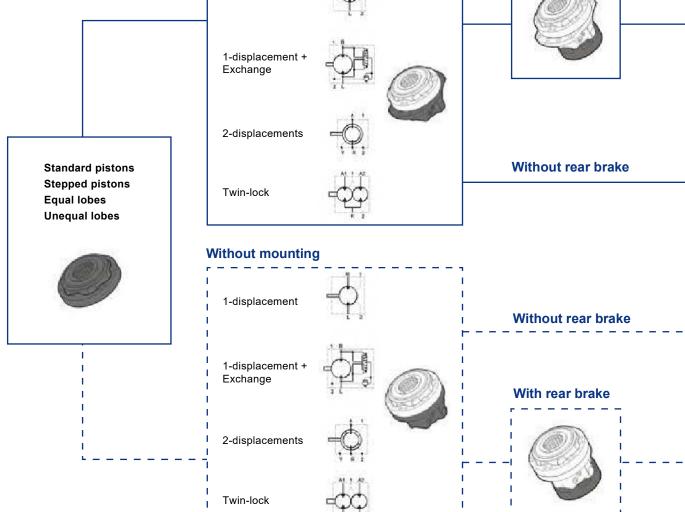
	1C motor	2C motor preferred	2C motor non-preferred
MS02	18 kW	12 kW	9 kW
MSE02	22 kW	16.5 kW	11 kW

			Cams with equal lobes							
C	•		MS02				MSE02			
_	4		8	0	1	2	0	1	2	
	1	cm³/tr [cu.in/rev.] cm³/tr [cu.in/rev.]	172 [10.5]	213 [13.0]	235 [14.3]	255 [15.6]	332 [20.2]	364 [22.2]	398 [24.3]	
	2	cm³/tr [cu.in/rev.]	86 [5.2]	107 [6.5]	118 [7.2]	128 [7.8]	166 [10.1]	182 [11.1]	199 [12.1]	
Classic motor 1C Max. speed	0	tr/min [RPM]	590	470	430	395	265	245	225	
Classic motor 2C	0	tr/min [RPM]	580	470	430	395	265	245	225	
Max. speed	2		590	475	430	395	340	310	285	

First displacement 2 Second displacement Motor inertia = 0.01 kg.m²

² Second displacement

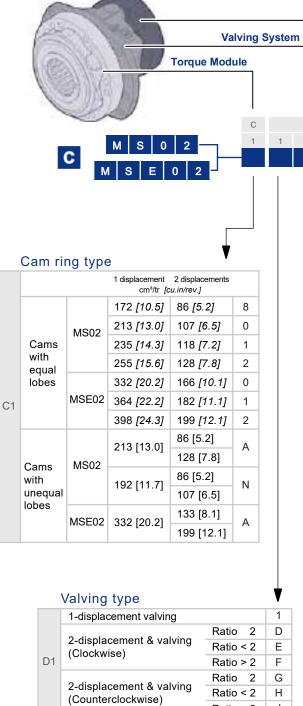

Motor inertia = 0.01 kg.m²


Modularity

M


/1

Modularity



Modelcode

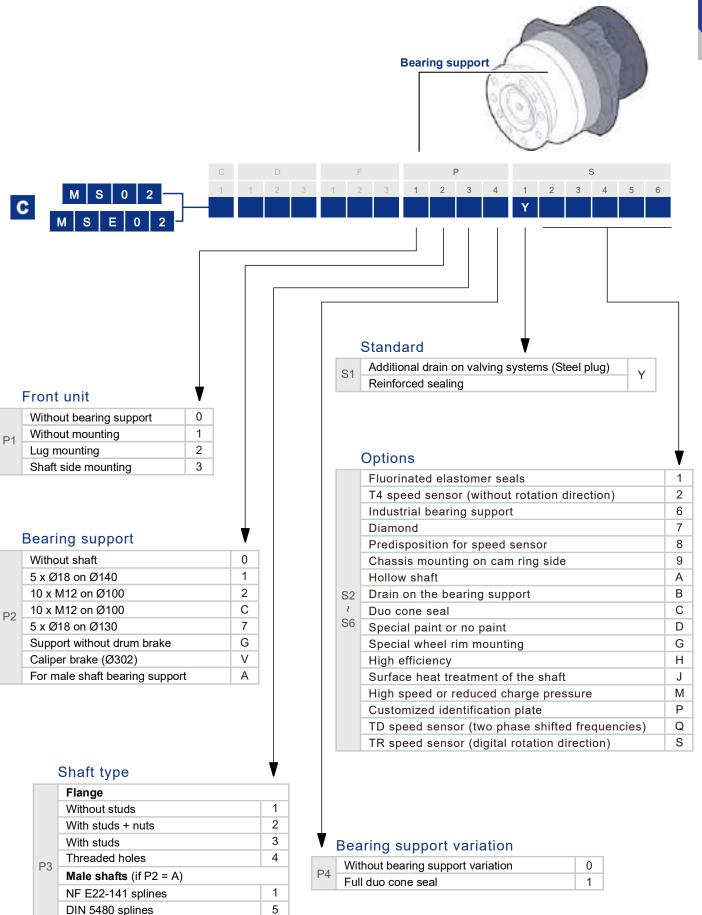
	<u>'</u>				
	F	Р		S	
3	1 2 3 1 2	3 4	1	2 3 4	5
			Υ		
	Connection type				
	Connection type		T		•
		Classic and High Flow motor		Only for High Flow motor	
D3	GAZ (BSPP) ISO 1179-1	G1/2	3	G3/4	G
50	Metric ISO 9974-1	M22 x 1.5	4	M27 x 2	М
	UNF (SAE) ISO 11926-1	7/8-14 UNF	Α	1 1/16-12 UNF	U
	Rear brake				
	F1 Combined brake	0			С
		Screwed	envii	ronmetal cover -	_
	≀ Parking brake				T

Valving cover

Ratio > 2

Brake

Classic		Without mounting	1	4	D
D2	motor	Lug fixing	2	5	Е
DZ	High Flow	Without mounting	В	L	-
	motor	Lug fixing	С	N	-


1 Displacement 2 Displacement Exchange Twin-Lock

Dual sprocket for chain

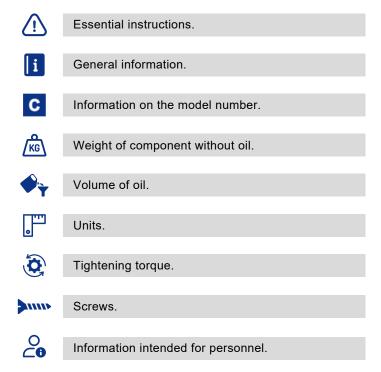
С

Modelcode

Methodology

This document is intended for manufacturers of machines that incorporate Hydraulics products. It describes the technical characteristics of products and specifies installation conditions that will ensure optimum operation.

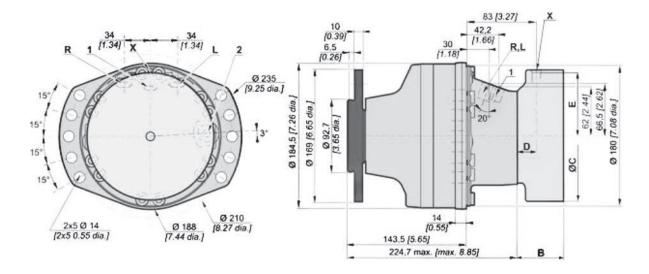
This document contains important safety information and installation instructions, which must be read carefully before beginning any installation.


Important notes and warnings are indicated

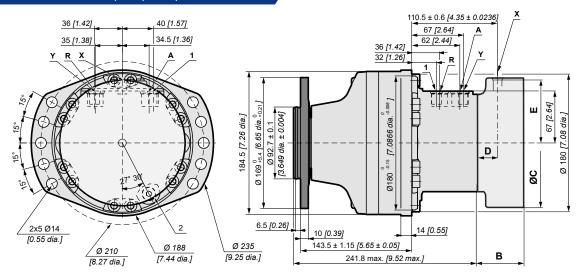
Safety comment.

This document also includes essential operating instructions for the product and general information.

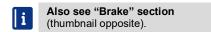
Expressed as follows

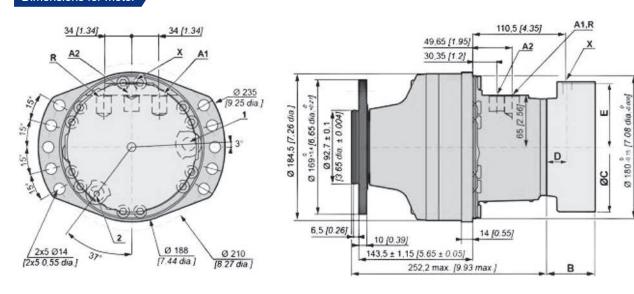

The views in this document are created using metric standards. The dimensional data is given in mm and in inches (inches are given in brackets in italics).

Wheel Motor


Dimensions for Classic (1110) 1-displacement motor

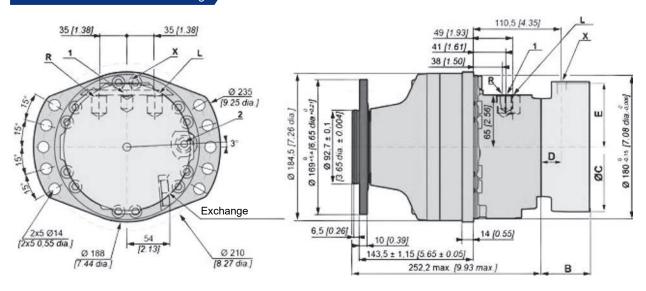
	Without brake	With brake
KG	26 kg <i>[57 lb]</i>	32 kg [70 lb]
P	0.80 L [48 cu.in]	0.70 L [42 cu.in]

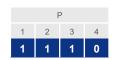

Dimensions for Classic (1110) 2-displacements motor



	Without brake	With brake
KG	28 kg <i>[62 lb]</i>	34 kg [75 lb]
P	1.00 L [60 cu.in]	1.00 L [60 cu.in]

-	С	T 0 3	C 0 3
FDro	В	62.5 [2.46]	76.5 [3.01]
	С	Ø178 [7.01 dia.]	Ø176 [6.93 dia.
	D	25.5 [1.00]	28.0 [1.10]
	Е	80.0 [3.15]	78.0 <i>[3.07]</i>

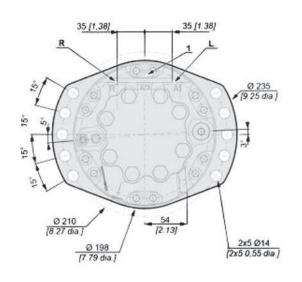

Dimensions for motor

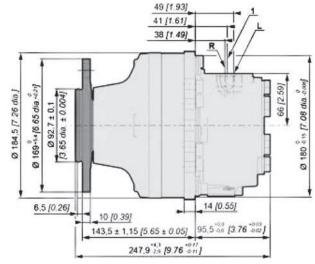


	Without brake	With brake
KG	28 kg <i>[62 lb]</i>	34 kg <i>[75 lb]</i>
₽	1.00 L [60 cu.in]	1.00 L [60 cu.in]

Dimensions for motor with exchange

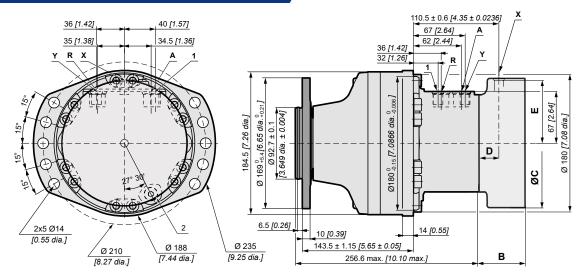
	Without brake	With brake		
KG	28 kg <i>[62 lb]</i>	34 kg [75 lb]		
Ø ÿ	1.05 L [63 cu.in]	1.05 L [63 cu.in]		

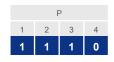

C	T 0 3	C 0 3		
В	62.5 [2.46]	76.5 [3.01]		
С	Ø178 [7.01 dia.]	Ø176 [6.93 dia.]		
D	25.5 [1.00]	28.0 [1.10]		
E	80.0 [3.15]	78.0 <i>[3.07]</i>		


Also see "Brake" section (thumbnail opposite).

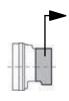
Wheel Motor Highflow

Dimensions for High Flow (1110) 1-displacement motor





Р								
1	2	3	4					
1	1	1	0					


	Without brake	With brake		
KG	26 kg [57 lb]	32 kg [70 lb]		
P	0.80 L [48 cu.in]	0.70 L [42 cu.in]		

Dimensions for High Flow (1110) 2-displacements motor

	Without brake	With brake
KG	28 kg [62 lb]	34 kg [75 lb]
Ø Ţ	1.00 L [60 cu.in]	1.00 L [60 cu.in]

C	T 0 3	C 0 3		
В	62.5 [2.46]	76.5 [3.01]		
С	Ø178 [7.01 dia.]	Ø176 [6.93 dia.]		
D	25.5 [1.00]	28.0 [1.10]		
Е	80.0 [3.15]	78.0 <i>[3.07]</i>		

	Also see "Brake" section
li	(thumbnail opposite).

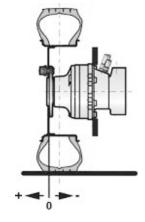
Wheel Motor

Support types

С	A mm <i>[in]</i>	B mm [in]	C mm <i>[in]</i>	D mm [in]	E mm [in]	N mm [in]	Wheel rim mountings	L mm [in]	
P 1 2 3 4 1 1 1 0	Ø 92.7 [3.65 dia.]	Ø 140 [5.51 dia.]	Ø 169 [6.65 dia.]	143.4 [5.65]	Ø 184.5 [7.26 dia.]	Ø 18 [0.71 dia.]	5 x M14x1.5	10 [0.39]	S O O O O O O O O O O O O O O O O O O O
P 1 2 3 4 1 7 1 0	Ø 77.6 [3.06 dia.]	Ø 130 [5.12 dia.]	Ø 169 [6.65 dia.]	140.6 [5.54]	Ø 184.5 [7.26 dia.]	Ø 18 [0.71 dia.]	5 x M14x1.5	10 [0.39]	LD
1 2 3 4 1 2 4 0	- -	Ø 100 [3.94 dia.]	Ø 120 [4.72 dia.]	142.9 [5.63]	Ø 184.5 [7.26 dia.]	10 x M12x1.75	-	11.25 [0.44]	ØN O O O O O O O O O O O O O O O O O O O
P	Ø 92.7 [3.65 dia.]	Ø 140 [5.51 dia.]	Ø 168 [6.61 dia.]	185.5 [7.30]	Ø 184.5 [7.26 dia.]	Ø 18 [0.71 dia.]	5 x M14x1.5	12 [0.47]	OB O OB O
1 2 3 4 1 V 3		Ø 140 [5.51 dia.] o see "Brake mbnail oppos		201.0 [7.91]	-	-	5 x M14x1.5	34 [1.34]	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 1 4 C 1	Ø 75.8 [2.98 dia.]	Ø 100 [3.94 dia.]	Ø 120 [4.72 dia.]	151.3 [5.96]	Ø 184.5 [7.26 dia.]	10 x M12x1.75	-	18.5 [0.73]	ON O

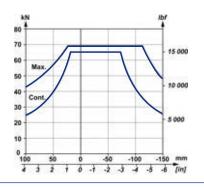
Studs

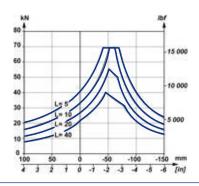
See option G for non standard studs.


See generic installation motors N°B59689D.

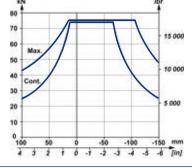
Wheel Motor

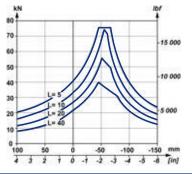
The service life of the components is influenced by the pressure. You must check that the combination of forces applied (Axial load / Radial load) is compatible with the permissible loads for the components, and that the resulting service lives of these components complies with the application's specifications. For an accurate calculation, consult YEOSHE.

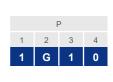

Permissible radial loads Service life of bearings Max. permissible loads: 0 tr/min [0 PSI]; 0 bar [0 RPM].

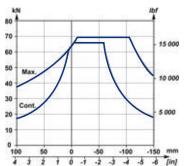

Continuous permissible loads : > 0 tr/min [> 0 RPM]; 275 bar [3 988 PSI].

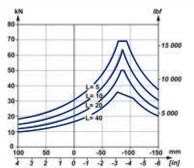
L: Millions B10 revolutions at 150 bars (average pressure), with 25 cSt fluid.

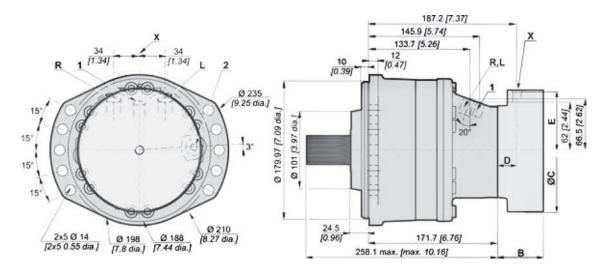

Test conditions: code 0 displacement, without axial load, shaft treated (option J), class 10.9 and 12.9 chassis mountings class 12.9 wheel rim mountings.

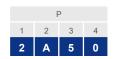




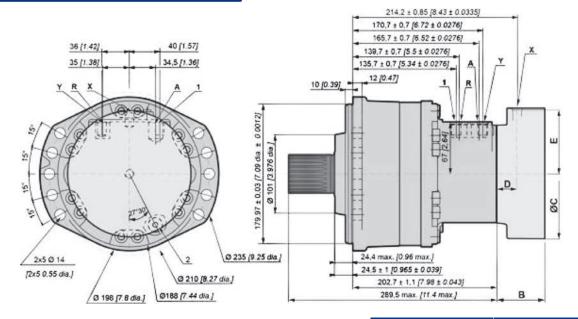








Shaft Motor Classic


Dimensions for Classic 1-displacement motor

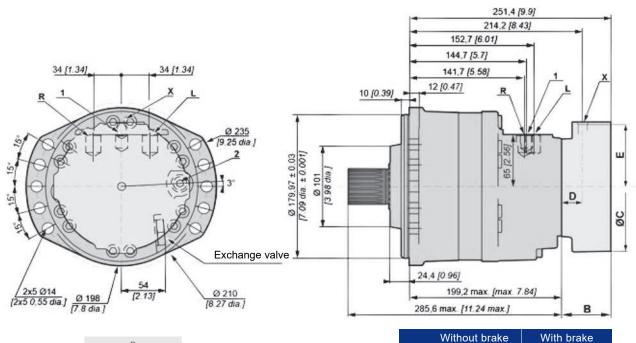

	Without brake	With brake		
KG	26 kg [57 lb]	32 kg [70 lb]		
₽	0.80 L [48 cu.in]	0.70 L [42 cu.in]		

Dimensions for Classic 2-displacements motor

-	С	T 0 3	C 0 3
	В	62.5 [2.46]	76.5 [3.01]
	C	Ø178 [7.01 dia.]	Ø176 [6.93 dia.]
111-111	D	25.5 [1.00]	28.0 [1.10]
	Е	80.0 [3.15]	78.0 <i>[3.07]</i>



Also see "Brake" section (thumbnail opposite).

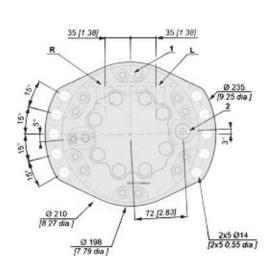

Shaft Motor Classic

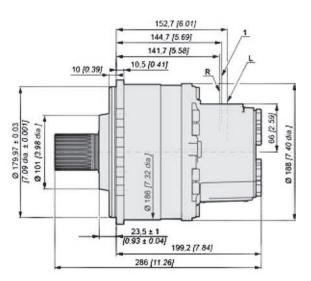
Dimensions for Classic Twin-Lock motor

Dimensions for Classic motor with exchange

1	2	3 5	4
	F)	

2	3	4				KG	30 kg <i>[66 lb]</i>	36 kg [79 lb]
A	5	0				₽	1.05 L [63 cu.in]	1.05 L [63 cu.in]
					ı			
C		-	T N 3	C 0 3				

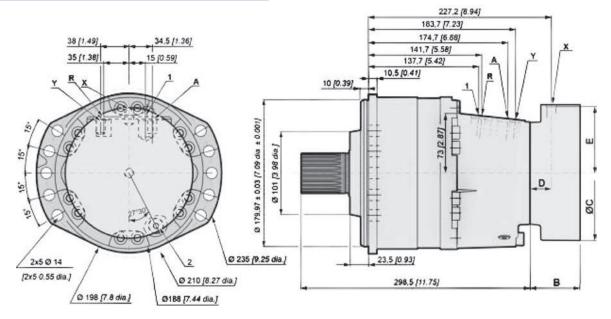

C	T 0 3	C 0 3
В	62.5 [2.46]	76.5 [3.01]
С	Ø178 [7.01 dia.]	Ø176 [6.93 dia.]
D	25.5 [1.00]	28.0 [1.10]
Е	80.0 [3.15]	78.0 [3.07]
	B C D	B 62.5 [2.46] C Ø178 [7.01 dia.] D 25.5 [1.00]


	Also see "Brake" section
1	(thumbnail opposite).

With brake

Shaft Motor High Flow

Dimensions for High Flow 1-displacement motor



2	Α	5	0
1	2	3	4
	F	5	

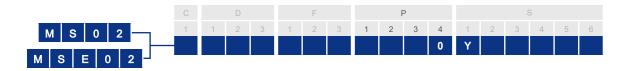
	Without brake	With brake
KG	26 kg [57 lb]	32 kg [70 lb]
P	0.80 L [48 cu.in]	0.70 L [42 cu.in]

Dimensions for High Flow 2-displacements motor

~	C
CII.	В
	С
111-111	D
	F

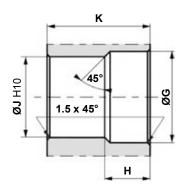
B 62.5 [2.46] 76.5 [3.01]	
C Ø178 [7.01 dia.] Ø176 [6.93 dia	a.]
D 25.5 [1.00] 28.0 [1.10]	
E 80.0 [3.15] 78.0 [3.07]	

		Without brake	With brake
-	KG	30 kg [66 lb]	36 kg [79 lb]
•	P	1.00 L [60 cu.in]	1.00 L [60 cu.in]



Also see "Brake" section (thumbnail opposite).

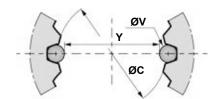
Shaft Motor High Flow



Support types

С			A mm [in]	B mm [in]	C mm <i>[in]</i>	D mm [in]	E mm [in]	F mm [in]	
P 1 2 3 4 2 A 1 0	NF E22-141 splines Nominal Ø Module Number of teeth	40 <i>[1.57]</i> 1.667 22	15 [0.59]	R 2 [R 0.08]	23.8 [0.94]	2 x M10	19 [0.75]	49 [1.93]	D B
P 1 2 3 4 2 A 5 0	Nominal Ø Module Number of teeth	50 [1.97] 2 24	15 [0.59]	R 2.5 [R 0.10]	23.8 [0.94]	2 x M10	22 [0.87]	60 [2.36]	A E F
P 1 2 3 4 2 A C 0	ANSI B29-1 or ISO 606 Chain no. Number of teeth Pitch Pitch Ø	90 14 25.4 114.2 [4.49]	Ø126.5 [4.98 dia.]	Ø 84 [3.31 dia.]	51.6 [2.03]	14.6 [0.57]	99.5 [3.92]	<u>-</u> -	D D D C E

Splined coupling


Standard NF E22-141

Pressure angle 20°. Centering on flanks. Slide fit (7H quality).

Standard DIN 5480

Pressure angle 30°. Centering on flanks. Slide fit (7H quality).

N : Nominal Ø. Mo : Module. Z : Number of teeth.

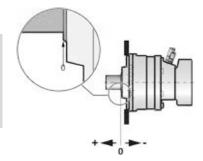
C	Ø G mm [in]	H mm [in]	Ø J mm [in]	K mm [in]	N mm [in]	Мо	z	Offset	(H10) mm <i>[in]</i>	Ø V mm [in]	Y mm [in]	Tolerance (Y) µm [µin]
P 1 2 3 4 2 A 1 0	41.3 [1.62]	20 [0.79]	36.7 [1.44]	48.3 [1.90]	40 [1.57]	1.667	22	-	36.7 [1.44]	3.5 [0.14]	33.446 [1.32]	+ 86 / 0 [+3.385 / 0]
P 1 2 3 4 2 A 5 0	51.5 [2.03]	23 [0.91]	46 [1.81]	59 [2.32]	50 [1.97]	2	24	-0.1 [-0.0039]	46 [1.81]	3.5 [0.14]	42.6 [1.68]	+ 72 / 0 [+2.832 / 0]

General tolerances: ± 0.25 [±0.0098].

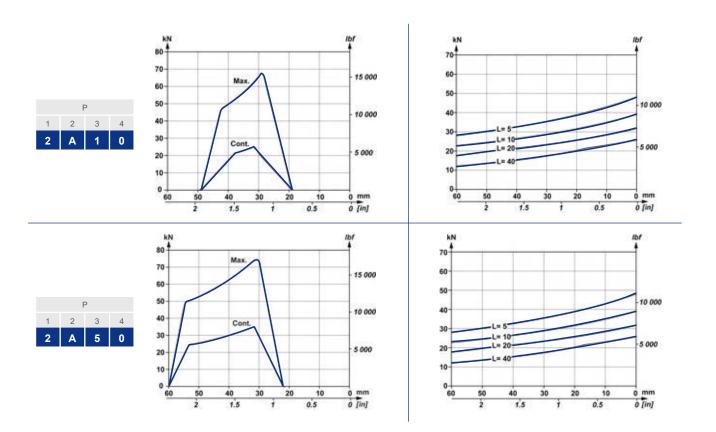
Material : Ex : 42CrMo4.

Hardening treatment to obtain R = 800 to 900 N/mm² [R = 116 030 to 130 533 PSI].

M


Shaft Motor High Flow

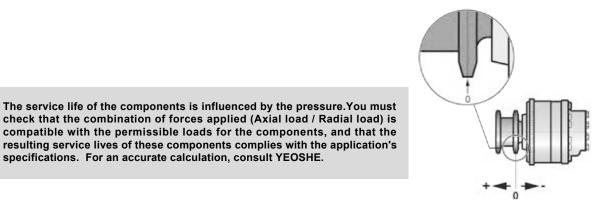
Radial load and service life of bearings curves



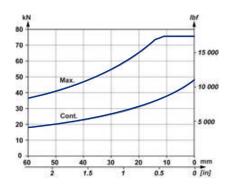
The service life of the components is influenced by the pressure. You must check that the combination of forces applied (Axial load / Radial load) is compatible with the permissible loads for the components, and that the resulting service lives of these components complies with the application's specifications. For an accurate calculation, consult YEOSHE.

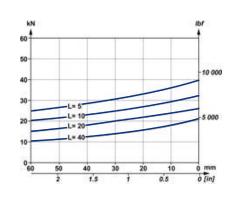
Permissible radial loads	Service life of bearings		
Max. permissible loads: 0 tr/min [0 RPM]; 0 bar [0 PSI].	L : Millions B10 revolutions at 150 bars		
Continuous permissible loads : > 0 tr/min [> 0 RPM]; 275 bar [3 988 PSI].	(average pressure), with 25 cSt fluid.		

Test conditions: code 0 displacement, without axial load, shaft treated (option J), class 10.9 and 12.9 chassis mountings.


Shaft Motor High Flow

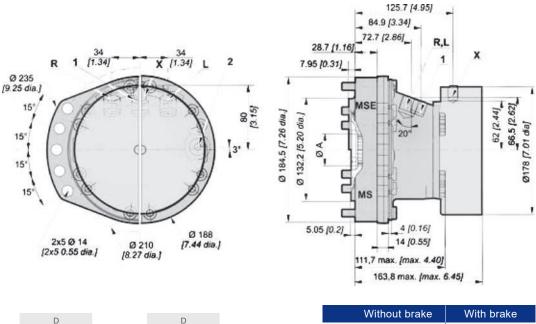
Radial load and service life of bearings curves


specifications. For an accurate calculation, consult YEOSHE.



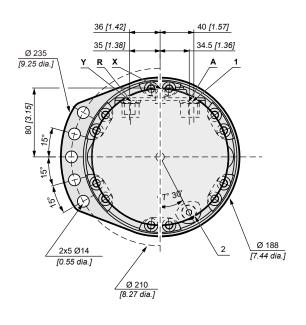
Permissible radial loads Service life of bearings Max. permissible loads: 0 tr/min [0 RPM]; 0 bar [0 PSI]. L: Millions B10 revolutions at 150 bars Continuous permissible loads : > 0 tr/min [> 0 RPM]; (average pressure), with 25 cSt fluid. 275 bar [3 988 PSI].

Test conditions: code 0 displacement, without axial load, shaft treated (option J), class 10.9 and 12.9 chassis mountings.

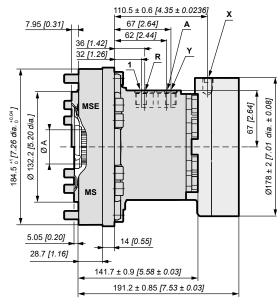


for Classic motor on demand for High Flow motor

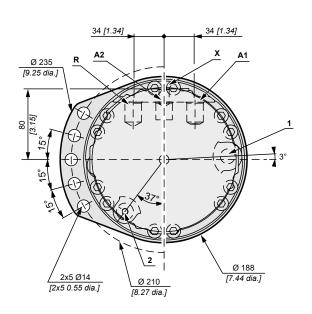
Dimensions for 1-displacement hydrobase

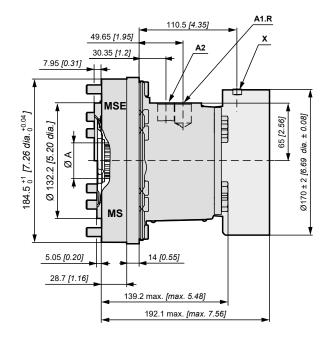


	D	
1	2	3
1	2	


	Without brake	With brake
KG	13.8 kg <i>[30 lb]</i>	19.9 kg <i>[44 lb]</i>
₽	0.35 L [21 cu.in]	0.45 L [27 cu.in]

Dimensions for 2-displacements hydrobase

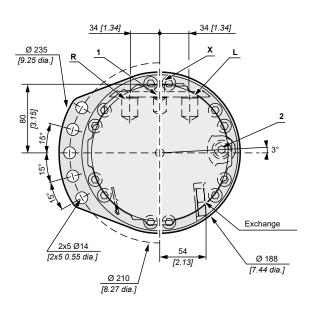




	Without brake	With brake
KG	18.8 kg <i>[41 lb]</i>	24.9 kg <i>[55 lb]</i>
₽	0.35 L [21 cu.in]	0.45 L [27 cu.in]

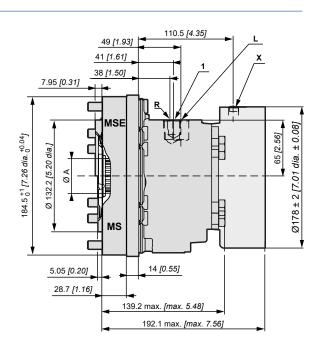
Hydrobases

Dimensions for Twin-Lock hydrobase



D			
1	2	3	
1	2		

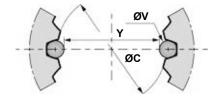
1	2	3
1	1	


	Without brake	With brake
KG	18.8 kg <i>[41 lb]</i>	24.9 kg <i>[55 lb]</i>
P	0.35 L [21 cu.in]	0.45 L [27 cu.in]

Dimensions for hydrobase with exchange

	Without brake	With brake
KG	19 kg <i>[42 lb]</i>	25.1 kg <i>[55 lb]</i>
P	0.40 L [24 cu.in]	0.50 L [30 cu.in]

Hydrobases



Cylinder block splines

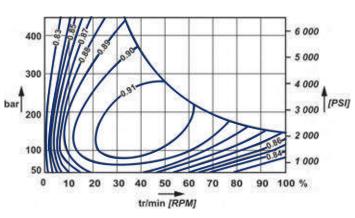
(as per standard NF E22-141)

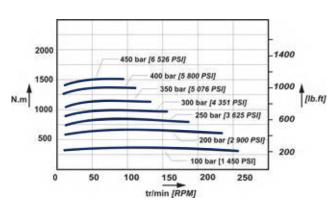
Dimension on 2 pins

ØA	Module	Z	Υ	ØV
40 [1.575]	1.667	22	33.446 [1.317]	3.33 [0.131]

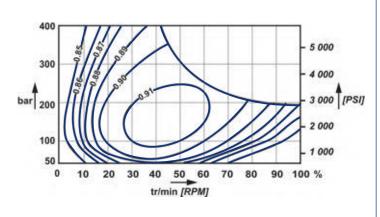
You are advised to have the installation validated by YEOSHE application engineer before using the hydraulic unit in an application.

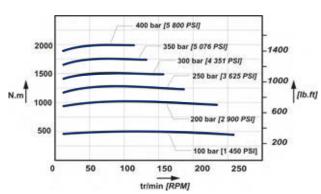
We must provide you with a detailed plan of the interface for any hydraulic unit use, consult your PoclainHydraulics sales engineer.


Efficiency and output torque

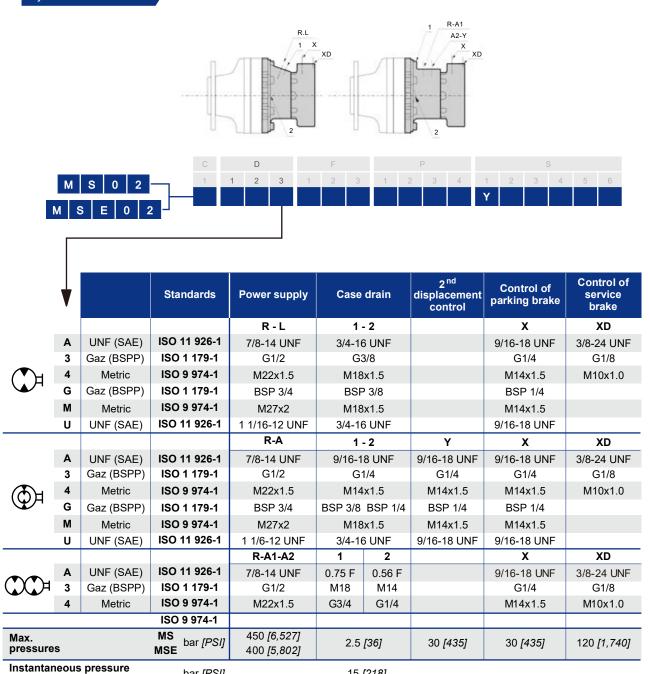

Overall efficiency

Actual output torque


Average values given for guidance for code 0 displacement after 100 hours of operation with HV46 hydraulic fluid at 50°C [122°F].


MS02

MSE02



For a precise calculation, consult YEOSHE.

Valving Systems

Hydraulic connections

peaks resistance

To find the connections' tightening torques, see the brochure "Installation guide" N° B61352L.

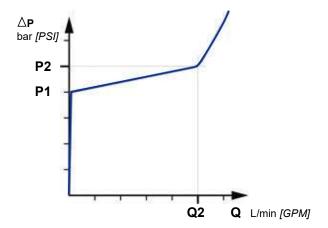
bar [PSI]

15 [218]

You are strongly advised to use the fluids specified in brochure "Installation guide" N° B61352L.

Do not put either a check valve or a poppet valve on the pilot lines (parking brake and displacement change) between the charge pump and the pilot valve. Do not use a piloting valve with integrated check valve.

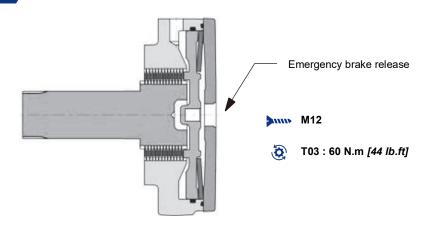
Valving Systems


Exchange

When a codification is requested, you must specify needed characteristics.

Fitted valve

Opening pressure of selector bar [PSI]	P1 bar <i>[PSI]</i>	Q2 L/min <i>[GPM]</i>	P2 bar <i>[PSI]</i>
10.0±1.0 [145±14.5]	15 <i>[218]</i>	9.5±2.5 [2.51±0.66]	25 [363]
8.5±1.5 [123±21.75]	20 [290]	13.0±1.0 <i>[3.43±0.26]</i>	31 [450]
8.5±1.5 [123±21.75]	18 [261]	3.7±0.5 [0.98±0.13]	24 [348]


Brakes

Parking rear brake

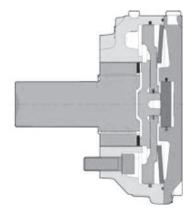
Brake principle

This is a multidisc brake which is activated by a lack of pressure. The spring exerts a force on the piston, which presses on the fixed and mobile discs, and immobilizes the shaft. The braking torque decreases in linear proportion to the brake release pressure.

	C T 0 3
Parking brake torque at 0 bars on housing (newbrake)	2,500 Nm [1,840 lb.ft]
Dynamic emergency braking torque at 0 bars on housing (max.10uses of emergency brakes)	1,625 Nm [1,200 lb.ft]
Residual parking braking at 0 bars on housing *	1,875 Nm [1,380 lb.ft]
Min. brake release pressure	12 bar <i>[174 PSI]</i>
Max. brake release pressure	30 bar <i>[435 PSI]</i>
Oil capacity	100 cm³ [6.1 cu.in]
Volume for brake release	16 cm³ [1.0 cu.in]
Max. energy dissipation	38 179 J

^{*} After emergency brake has been used

Do not run-in the multidisc brakes.



A functional check of the parking brake must be carried out each time it is used as an auxiliary brake (or emergency brake). For all vehicles capable of speeds over 25 km/h, please contact YEOSHE .

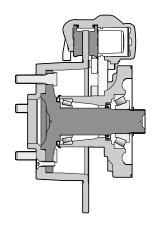
Brakes

Combined rear brake

Brake principle

This multi-disc brake operates in two distinct ways which cannot be used simultaneously :

Either by an absence of pressure (static braking). The spring applies a force to the static piston that, which damps the fixed and free discs, pre-venting the shaft from turning.


Or by braking pressure (dynamic braking): The braking command creates a pressure on the dynamic braking piston, which damps the fixed and free discs, preventing the shaft from turning. Braking torque increases linearly as a function of the piloting pressure.

	C C 0 3
General information	
Max. rotation speed	500 rpm
Max. energy dissipation for 1 braking (maintenance needed)	60 kJ
Dynamic brake information	
Permissible torque during dynamic braking	1,580 Nm <i>[1,170 lb.ft]</i>
Pressure to obtain max. permissible braking	120 bar <i>[1,740 PSI]</i>
Piston chamber piloting volume, worn brake	2 cm³ [0.1 cu.in]
Service brake max. allowed energy	60 kJ
Parking brake information	
Min. parking brake torque	2,250 Nm [1,660 lb.ft]
Min. dynamic brake torque in case of emergency brake with new brake	1,687 Nm <i>[1,240 lb.ft]</i>
Release brake pressure (min. / max.)	13 <i>[188] /</i> 30 <i>[435]</i>
Piston chamber piloting volume (worn brake)	24 cm³ [1.5 cu.in]
Number of parking brake applications	2,000,000

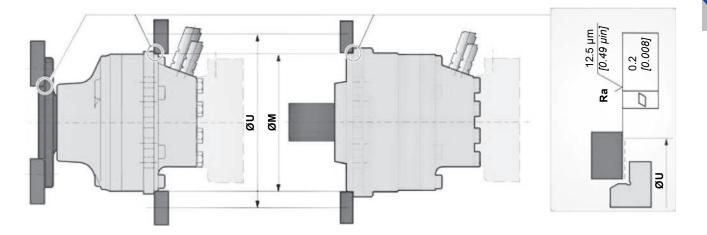
Caliper brake (Ø 302)

Diameter of brake disc : Ø 302 [11.89 dia.]

	C 1 V 3	
Disc diameter		302 mm [11.89 in]
Maximum service brake torque (1)		1,930 Nm [1,420 lb.ft]
Pressure to obtain max. service brake torque		120 bar [1,740 PSI]
Max. volume required for braking		< 1 cc
Max. energy dissipation (2)		60 000 J
Fluid - DOT		Yes

- (1) when braking at 280 rpm
- (2) at 590 rpm

Avoid hard or emergency braking during the run in of the brake pads.



The max. braking torque can be obtained only when the brake has been run in. Consult YEOSHE.

Installation

Customer's chassis and wheel rim mountings

Take care over the immediate environment of the connections.

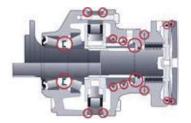
ØU mm [in]	ØM (1) mm <i>[in]</i>	> mm	Class
240.00 [9.45]	180.25 <i>[7.10]</i>	10	10.9
	(1) +0.3 [+0.012] -0.2 [-0.008]	M12 x 1.75	12.9

You don't need to chamfer your chassis and wheel rim.

For more information see technical catalogue "Installation guide" N° B61352L.

You are strongly advised to use the fluids specified in brochure "Installation guide" N°B59689D.

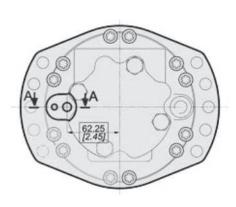
To find the connections' tightening torques, see the brochure "Installation guide" N° B59689D.

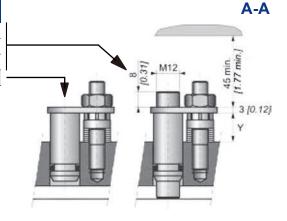

M

You can accumulate more than one optional part. Consult YEOSHE.

- γ Additional drain on valving systems (Steel plug) and Reinforced sealing
- 1 Fluorinated elastomer seals

Nitrile seals marked in the figure below replaced by fluorinated elastomer seals.





Consult YEOSHE sales engineer.

2 S Q 8 Installed speed sensor or predisposition

Designation	C
T4 speed sensor (without rotation direction)	2
TR speed sensor (digital rotation direction)	S
TD speed sensor (two phase shifted frequencies)	Q
Predisposition for speed sensor	8

Max. length Y = 21.5 [0.85]
Standard number of pulses per revolution = 40

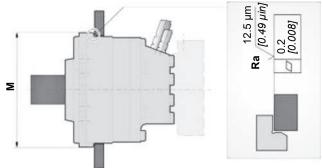
Look at the "Mobile Electronic" N° A01889D technical catalogue for the sensor specifications and its connection.

i

To install the sensor, see the "Installation guide" brochure No. B61352L.

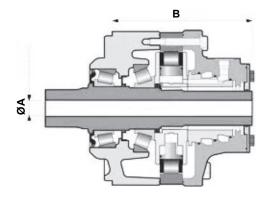
Reduced preload setting of bearing

Reduction of around 50% from the rated value in the bearings' preload value. Without external loads, increases the lifetime of the bearing support.


For a precise calculation, consult YEOSHE.

Diamond

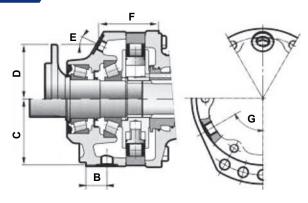
Special treatment of the motor core which considerably increases its strength, making the motor much more tolerant to temporary instances of the operating conditions being exceeded.


Chassis mounting on cam ring side

Only available for shaft motors.

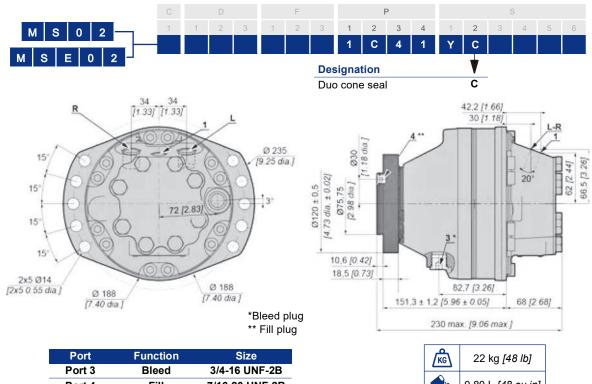
	ØM (1) mm <i>[in]</i>	> nn	Class
	190.30 <i>[7.49]</i>	10	10.9
(1) +0.3 [+0.012] -0.2 [-0.008]		M12 x 1.75	12.9

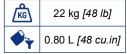
Hollow shaft



A	B
mm <i>[in]</i>	mm [in]
Ø 15	175.2 ± 1.25
[0.59 dia.]	[6.90] ± [0.05]

Radial load x 0.75 No torque transmittable to the rear


Drain on the bearing support

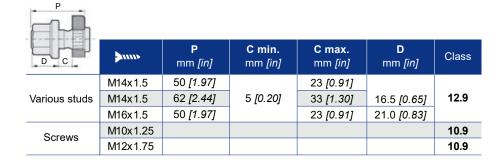

	GAZ (BSPP)	В	С	D	Е	F	G
Wheel motor	ISO 1179-1	mm [in]	mm [in]	mm [in]		mm [in]	
Shaft motor	G1/4	_		73.1±0.5 [2.88±0.019]		25°76.1±0.9 [3.00±0.035]	-

Duo cone seal

Track drive reinforced sealing motor. This option is compatible only with 1C41 bearing support.

Port	Function	Size
Port 3	Bleed	3/4-16 UNF-2B
Port 4	Fill	7/16-20 UNF-2B

Consult YEOSHE application engineer for 1C41 bearing support maintenance and oil service.


Special paint or no paint

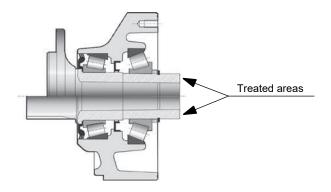
The motors are delivered with YEOSHE yellow ochre primer as standard.

Consult YEOSHE for other colors of primer or topcoat.

Special wheel rim mounting

See generic installation motors N°B59689D.

High efficiency


Reinforced piston sealing to improve volumetric efficiency.

For a precise calculation, consult YEOSHE.

Treated shaft

Heat treatment on the indicated bearing radius and splines.

High speed or reduced charge pressure

Option M leads to:

- In the case of MS02: Reduction in charge pressure.
- In the case of MSE02: An increase in speed and a reduction in charge pressure.

For a precise calculation, consult YEOSHE.

Customized identification plate

Your part number can be engraved on the plate.

Consult YEOSHE application engineer for other possibilities.

YEOSHE BEST CHOICE Efficient Performance

Innovative Technology Reliable Quality and Service

油聖液壓科技有限公司

YEOSHE HYDRAULICS TECHNOLOGY CO.,LTD.

413 台灣台中市霧峰區霧工一路68號

No.68, Wugong 1st Rd., Wufong Dist., Taichung City, Taiwan, 413 TEL +886-4-23332339 FAX +886-4-23333817 E-mail yeoshe@yeoshe.com.tw

東莞辦事處 Dongguan **CP** +86-13600266957 (Miss Zhong)

E-mail yeoshe@yeoshe.com.tw

上海辦事處 Shanghai CP +86-15021931394 (Mr. Wu) CP +86-18939716986 (Mr. Chen)

經銷商 Distributor

www.yeoshehydraulic.com

版權所有 翻印必究 Copyright @2025 by YEOSHE